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* INTRODUCTION 

I and i 
GENERAL COMMENTS 

i 

This introduction will review the general status of the problem 

of the design of the vertical take-off airplane.    It will attempt to indicate 

the most effective means, both theoretical and experimental,  to further 

I the knowledge of the problem.    There exist    certain basic requirements 

" ' which cannot be bypassed ar.d without the full understanding of which a 

really successful design cannot be produced.    The essential elements 

necessary for the development of such a design will be mentioned briefly. 
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I 
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The first matter to be note^i is that the most costly method of 

creating lift ^.s that of the relatively heavily loaded fan.    For this reason 

it is basically desirable to equip the aircraft also v/ith a regular wing 

surface of sufficient area to relieve the fan-produced lift at the lowest 

forward velocity consistent with the particular mission.    As the forward 

speed is increased a larger and larger fraction of the required fan power 

may be employed for forward propulsion,  either by direct mechanical 

transmission to a conventional propeller or by merely directing the jets 

gradually more in a rearward direction.    In the latter case there are 

several possibilities.    One may,  for instance,   change the direction of 

u 



lar. '?t and the cross section of the outlet openings in such a manner that 

the area of the opening is reduced as the cosinus of the deflection angle 

from the vertical.    The mass of air per second is then reduced while 

the pressure head of the fan is increased so as to keep the horsepower 

requirement constant,  usi^g clie excess power for acceleration.    This 

I calls for an adjustable pitch propeller which,   of course,   cannot cover 

too much of a range.    This case will,  however,  be covered in the 

following as a simple example. 
I 
I 
i 

i 
i 
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A more desirable case is,   however,   one in which the airflow is 

kept constant in forward flight by employing a programmed outlet cross 

section as the direction of the thrust vector is gradually inclined back- 

wards.    Very simply,  the pressure head behind the propeller is then 

maintained at a level to balance the velocity head of the incoming air, 

due to the forward velocity.    The propeller or fan is,  in this case, 

always working at optimum, or design condition and is of fixed angle of 

attack,  while only the outlet is adjustable.    This design is novel as far 

as is known. 

The primary problem concerns the use of ducte4 propellers.    It 

has and can be shown that a ducted propeller carries,   in the extreme 

ideal case of proper inlet design,   as little as one half of the total thrust. 

The question is whether this gain is of any realistic or practical value. 

m 



The work,   of course,  is done exclusively by the propeller which then 

carries one half thrust at double velocity through the disk.    However, 

unless the converging inlet is much larger than the propeller area 

and scientifically designed,  the actual effect is found to be only in 

the order of 10 - 20% ,    Also,  this effect is not one of efficiency but 

rather one relating to propeller size and load.    The advance ratio of 

the propeller is doubled,  which is favorable.     It is definitely to be 

expected that the overall efficiency in lifting effect generally is lower 

for a ducted propeller than for a free propeller.    Neither may there 

be any net weight saving,   in fact,  the gain may only be one of a 

| reduction in the required gear ratio;   while the added surface con- 

tributes to increase in weight and drag. 

I 

I 

I 
In forward flight the angular deflection of the airflow entering 

into the inlet opening of the duct is on the average near 90° ,   or a 

ij ' right angle.    It is quite evident that a 90   flow deflection,   if unaided, 

will result in a completely turbulent flow unless the forward velocity 

is very small compared to the inlet velocity.    Also,  the velocity at the 

leading edge side of the inlet will be very much larger than the inlet 

velocity near the rear side.    The center of thrust of the propeller will 

move both rearward and towards the advancing -side of the propeller 

as in the case of an "unducted" propeller in a free stream (as demon- 

strated in the NASA wind tunnel test   referred to elsewhere in this 
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report). This unbalance of the propeller thrust may have disasterous 

effect on the propeller; the gears and bearings will require a heavier 

construction to take ax; vibration load on blades and bearings. 

Therefore,  to obtain proper design condition,   care must be 

taken that the flow enters the duct at constant velocity around the 

circumference of the duct inlet in order to center the load and to obtain 

full efficiency of the propeller.    The mathematical problem of the proper 

duct design to fulfill these conditions is given in the body of this report. 

This study should be followed up with basic experiments on the inflow 

problem and the effect of baffles as a first step. 

In regard to the outlet design,   it has already been pointed out 

that it is highly desirable to maintain a constant air velocity past the 

propeller or fan.    The cross section of the outlet duct measured 

perpendicularly to the velocity vector must then be decreased slightly 

with forward speed to maintain a constant pressure differential across 

the fan at all speeds,    The theory and design of such a duct should be 

fully developed and elementary tests should again be performed as the 

primary step. 

The discussion so far relates only to a design in which the fan 

is installed in the wing or body of the aircraft with the fan axis 

generally perpendicular to the flight direction or with a slightly rear- 

ward directed thrust axis.    In this case,   a relatively large fan area 
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may be most easily accommodated and,  in fact,   as little as one half 

of the thrust need,  in the limit, be carried by the fan in hovering 

condition.    However,   scientifically designed inlet and outlet vanes 

must be provided to avoid deterioration of the lifting effect in 

forward transition and to adjust the thrust vector as required in 

magnitude and direction. 

Another method is the-use of fans turnable around a transverse 

diameter of the fan disk   (Doak type).    In this case,  the duct itself is 

of little use since it must be reasonably streamlined and thus carries 

only a small fraction of the total thrust.    It can be shown that a slight 

increase in solidity of the propeller is more efficient unless the propeller 

is already very heavily loaded,    Strictly speaking,  inlet vanes are again 

required in transition since the propeller efficiency will suffer by the 

fact that the thrust vector moyes backwards and towards the advancing 

side of the properer disk.    In favor of this design is the fact that the fan 

is only exposed to heavy vibrational forces in the transition,   and may be 

adjusted properly in full forward flight with all,  or almost all,  lift 

transferred to the wing. 

Another interesting possibility is the arrangement tested in NACA 

TN 3198 described under the title - "Dynamic Stability and Control 

Clic.racteristics of a Cascade-Wing Vertically Rising Airplane Models in 

Take-Offs,   Landings,   and Hovering Flight"    by   M.  O.  McKinney, 

vi 



Louis P.  Tosti,   and Edwin E.  Davenport   (June,   1954).    In this 

experiment the propeller or propellers are located with the axis in the 

normal fore-and-aft position,  the slipstream being-deflected by outlet 

vanes only.    Although these vanes were not designed for a (slightly) 

convergent flow and there was,   in consequence,   some stall flutter 

causing a sustained pitching oscillation,  the net result was promising 

and should be fully explored in the near future.    The overall lifting 

efficiency of the fans reached 92% which efficiency with correction for 

scale effect and design using a slightly convergent flow in the turning 

vanes would have reached at least 4% more in a full-scale design. 

i I How the practical design of such aircraft can be accomplished with 

adjustable or removable vanes is a problem that might be fully justified 

as worthy of further work.     The efficiency of this arrangement is 

apparently higher than in any other proposed solution with or without 

ducted fans.    The practical problems in such a design appear perfectly 

solvable on the basis of adequate experimentation. 
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We shall finally present a few remarks about the theoretical and 

actual effect of a duct since there is,   sometimes,  a certain amount of 

misunderstanding.    It has been stated and shown in the theoretical 

section of this report,  that the duct,  when inserted in a large surface 

such as a wing and with a scientific design of optimum inlet configuration, 

may carry in the limit  one half of the total thrust of the  combined 
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arrangement.    The propeller may,  in consequence, be of smaller 

diameter and run at a more favorable advance ratio.    However, 

there exists the fundamental difficulty that there tends to be a 

cancelling effect of the extraneous lift caused by a considerable 

suction effect on the lower surface which is inherent in the problem. 

:j This can theoretically be avoided by a cylindrical extension of the 

duct below the wing surface.    The lifting efficiency,  therefore,   always 

appears to fall short of expected values even in hovering flight.    In 

I general,  a duct design can evidently only be defended in the case in 

which the wing is used to enclose the fan for flight at very high speeds 

and for a very heavily loaded fan.    For lower top speeds a design a la 

' NACA or Doak may be more promising,   subject to necessary tentative 

or obvious improvements already indicated. 

i 

IJ 

I 
We shall finally give a few remarks about the pitching moment. 

There is again a certain misunderstanding existing in regard to this 

I problem.    This pitching moment is not an inherent fault of the design 

and it cannot be alleviated by simple baffles at any point.    It comes 

simply from the fact that the incoming momentum is ordinarily not in 

line with the outgoing momentum.    It will be shown in the body of the 

I report that the incoming air is made to work on an arm rr R   which 

U 
is quite considerable and that the outgoing air similarly acts on an 

arm of considerable length,  if or when the flow is deflected in a rear- 

■ ward cirection.    The design referred to above as the NACA method 

I 
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avoids or may avoid the pitching moment with theoretical perfection. 

In the limit,  therefore,  a design with zero or nearly zero pitching 

moment is entirely possible.    The magnitude of the pitching moment 

of the regular arrangement is indicated in the theoretical section of 

this report. 

This rejort contains two separate main sections.    The first 

covers certain theoretical developments,  including some new ones of 

fundamental aspects.    The theory of the line sink in a two-dimensional 

wing represents a classical solution in the airfoil theory.    Closed 

expressions are given for the hitherto unknown pitching moment.    In 

the second section of this report,   the rather extensive experimental 

literature has been analyzed and consolidated.    Finally,  there is a 

short appendix giving certain specific design and performance problems. 
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LIFTING FAN AIRCRAFT 

I. INTRODUCTION 

J.'O design an airplane of a nonconventional type character- 

ized by at least partial use of fans to produce lift requires a knowledge of 

new effects not entering into the design of normal airplanes.    Random ex- 

periments and flight testing may,  at most,   show the difficulties,  but without 

an adequate theory such testing rarely leads to more than an accumulation 

of scattered and sometimes contradictory findings.    On the other hand, 

while the theory may not directly provide complete answers,   ic i&sufficient 

that it provide a clear understanding of all principles involved and provide 

means for an orderly solution of well-defined problem areas by experi- 

mentation or numerical calculations or both.    Only in extremely simple 

cases may a solution be found without a clear understanding of the theory. 

The lifting fan aircraft does not fall into this category as experience has 

shown. - 

We shall give some elementary considerations of the problem of 

the duct or propeller enclosure commonly appearing in fan-lifted aircraft. 

The purpose is to show the underlying principles which may lead to better 

understanding of the problems involved and to show means for solving 

such problems by experiments or calculations. 



I 
11. GENERAL CONSIDERATIONS 

A.    The Effect of a Duct 

Surprisingly enough it will be shown that the 

propeller duct serves only one useful purpose,  namely to reduce the 

diameter of the propeller.    It appears that all other effects are un- 

favorable and must be recognized as such. 

Let us consider a propeller or fan in an opening in an infinite 

wall (see Figure II-1).    Let the volume of air be of a density P   and 

let the volume be   Q   per unit time.    We shall conduct what is called a 

"Gedanken experiment" by putting a series of baffles a« shown in the 

figure.    The cross sectional areas of the channels leading from the 

hemispherical area down to the circle of the propeller plane are all 

reduced in the ratio of two at the upper end to one at the lower. 

V I M 

Figure II-1 
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The channels are frictionless and a constant negative pressure is 

maintained at the plane of the propeller,  or rather,  immediately in 

front of same. 

The velocity of the medium in the hemispherical infinity is then 

v=- Q 
2 irr 

(ii-1) 

The negative pressure beyond the circular opening of radius   R   is then: 

P=-iP 
-, 2. 

a 
zur 

(II-2) 

and the resulting upward force is then given by the integral 

2f0o 

F 

_a%('Vir_   pa2 

öTrwR r3     8w 
(II-3) 

With uniform (negative) pressure in the circular opening immediately 

in front of the propeller there is,   of course,  uniform velocity «ince the 

flow is potential flow with no frictional losses. 

The velocity in the plane of the circular opening is,  therefore, 

V=-Ar 
TTFT 

(II-4) 



and the corresponding local pressure 

-,2 

P=-rP 
a 

TR^ 
(II-5) 

The downward momentum may now be calculated for the opening as 

(p+pVc
2)TrR= '2K.1TRV +fv-rrR2, TTR' 

Tfh^ (11-6) 

=4-P QJ 

2 v   TTR' 

There is thus an equal and opposite (or upward) force on the wall and 

the baffles equal to 

F = ^P- Q' 

Since,   as shown above,       —- P ~ g-.- 

wall beyond the radius   R ,  the remainder,   or 

(II-7) 

is carried on the infinite 

FB~ Ö 
3     Q; 

(11-8) 

is carried as an upward force on the baffles, 

Finally the prcpeller must restore the pressure back to zero 



and consequently carries an upward force 

F=pirR2=4-p V 
2 l   TTR2 (11-9) 

I 
! 

Briefly,  therefore,  in the ideal case with a propeller located 

in a. "large" surface and provide-d with "i-deal" inl-et baffles,  the 

propeller carries exactly one half of the total force. 

In fact,  it may be shown in general that the force on the propeller 

situated in an infinite wall with an ideal inlet duct   (as in Figure 11-2)   the 

propeller,  when properly loaded,  again carries exactly one. half of the 

total force. 

Figure II-2 
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In brief,  a free propeller under ideal conditions operates with 

a velocity at the plane of the propeller equal to one half of the final 

velocity in the wake.    If the propeller were to operate in the region of 

the final velocity   (as in Figure II-2) - (normally at least one radius 

behind the plane),   then the cross sectional area of the propeller disc 

would be exactly one half of the normal area and the velocity would be 

double,   in other words,  the same horsepower on half the area.    To 

achieve this result it is necessary to install an ideal-duct or baffle 

system.     In practice it must be stated that a considerable loss in drag 

will be caused by such inlet or baffle system. 

As final remarks,   the condition of an infinite plane can be 

relaxed without undue loss in lift to,   let us say,   a plane equal in area 

to a few times the propeller disc area,  but the condition of ideal inlet 

vanes cannot be relaxed without a large drop in the efficiency of the 

propeller due to resulting improper velocity distribution,    In fact,   a 

serious fault of the most common design is the excessive velocity at 

the tip of the propeller.    The complicating but important effect of 

forward velocity will be considered in the following article. 



i 

B.    The Moment Acting on a Surface With a Ducted Fan 

There exists a simple and perfectly general 

equation for the moment of a source (or sink) in a plane.    As this 

problem has a direct bearing on the problem of the lifting fan,  we shall 

show the development in the following.  There is also a simple expression 

for the corresponding ideal "drag".    This material is given to show the 

principles involved. 

Figure II-3 

In Figure II-3 let there be a sink at the origin in the   x - y plane. 

At a distance the resulting velocity due to the sink is directed along the 

radius vector towards the origin.    Let this velocity   V   be in a plane 

BOA containing the   z - axis and the line   OA   which forms an angle o( 

I 



/ 

with the   x-axis.    The velocity vector forms an angle U» with the 

vertical or   z-axis.    One has the following components of the velocity 

vector 

\/x=-VSinLfCo5o( 

V =- \/5in^Smo( (11-10) 

Further,   let the forward velocity be   V0   directed as in Figure II-3 

along the negative   y- axis and uniform in the upper half space. 

Let us next draw a hemispherical control surface of radius   R   around 

the origin   O .    We shall now calculate the momentum entering such control 

surface.    This momentum corresponds to the "drag".    We shall next calculate 

the moment of the momentum entering the control surface.    This quantity 

gives the pitching moment resulting from the sink. 

An element of the surface is given by 

The component of this surface element in the   y-direction is 

We shall see that the other componentsclJ^.3and Jjl are of no 

concern since there is a right-left symmetry together with a fore and 

aft symmetry in the momentum integral. 

As we are only concerned with the momentum along the   y-axis 



the arm around the   x - axis is always 

fcosdt 

which is the vertical distance above the   x - y plane. 

We are concerned with the momentum along the   y - axis or the 

y - momentum.    The unit momentum is 

M=^CV0 + VY) (11-13) 

There is thus an excess of momentum in front   and a momentum 

deficiency in the rear quadrants as compared to the mean value.    It is 

simplest to consider the air as containing a momentum vector pVo 

in the   y   direction and a momentum vector öV   in the radial inward 

direction.    It is obvious that the secor.d vector does not contribute to 

the moment of the momentum,   and one,  therefore,   need only consider 

the main vector 

M-?V0 (11-14) 

and calculate the quantity of air crossing the control surface.    This 

quantity is simply 

Vdil 
since the constant velocity   \/    contributes nothing. 

With 

ASL=rZ^r)^o(ci\h (11-15) 



I 
and the arm 

cL = jrcos[i> (11-16) 

There remains for one quadrant 

^M = fWor'sin^d^Kcosij; 

•tor 

lVl=pVWTrR- (II-H) 

where   R   is the radius of the control surface. 

This is the significant expression for the pitching moment. 

Since the volume per second through the sink is 

Q = 2TrRaV 

one has also 

M = eVoQ-f 

(11-18) 

(11-19) 

Further,   as the "lift" is 

(11-20) 

where   W   is the velocity of the jet,   one has further for the pitching moment 

M = L-^R (11-21) 

10 
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It is thus shown that the pitching moment increases linearly 

with the "forward" speed   )/0  .    The quantity  R   or the radius of the 

control surface is related to the dimensions of the •'airfoil" or surface. 

It can be shown,  however,  that this is a general relation.    A large 

surface around a duct is therefore the cause of a large pitching moment. 

By a simple integration of the moment one obtains fa the "drag" 

and consequently 

where   \/    again is the forward velocity and   V   the jet velocity. 

The "arrested" momentum or "drag"      PQiVQ        thus acts on an 

arm -4-^   above the lifting surface or the propeller plane where   R   is 

the "mean" radius of such plane or area. 

11 
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C.    Moment of Momentum Due to Sink in the Center of a 
Rectangular Plate 

Let   V\    be the constant velocity in 

the negative   Y   direction and   \/s   the 

velocity due to the sink in the center 

of the rectangular plate.    We shall 

initially consider the velocity V^   to 

be given by the formula 

a 
^    air r* 

(11-24) 

Figure  II-4 

which is equivalent to extending the plate to infinity in all directions. 

Q   is the volume of air per unit of time and f" the radial distance 

from the center.    We shall show,   in a later article,  how the case of a 

finite plate may be obtained.    The purpose of the present development 

is to show the general effect of the orientation of the rectangular surface 

on the moment of the momentum caused by the sink. 

The pressure is given by 

=Po-ih^HVevly5 (11-25) 

12 



Since the two first terms are symmetric with respect to the center of 

the plate it is only necessary to consider the term 

P=-fV).\/s = -fV;\/sSint>( (11-26) 

where OC is the angle of the radius vector   jr with the   X   axis as the 

only term contributing to the moment around the   X   axis.    As each 

quadrant in Figure (II-4)   contributes the same amount we may write 

for the moment around the   X   axis 

(X fX, 
(11-27) 

'0   so 

By reference to Figure(ll-l) it may be verified that this is a 

"nose-up" pitching moment as expected. 

With v.= a 
2Trr; 

and sin cK = Y one has 

(11-28) 

We shall obtain the double integral 

'Y, rx, 
Y'cJY 

dx 
a 

Y^r Jo J-^F13   I     'L^JTvFJ 

0 

I 

'Y, 
= X1 

AY 

UM 

= X, 5inn   -rr ' x, 
13 



and the moment may be written: 

M^-f-^QX.Sinh"1-^ (11-29) 

Also in the form 

M^fViQ-^Sinh -i Y, (iI-30) 

it is seen that the arm Q is 

a=^xlsinh",4 (11-31) 

Let us consider a rectangle of a given areax.y. = 1   or the area 

A =  4 .    One may then show the effect of the ori-entation of such rectangular 

area by the following table for a moment of the momentum or th-e pitching 

moment   M   or rather the arm CL ,  which is really a moment coefficient. 

TABLE   II-1 

x, 1/2 1 2 4 

x, IT 1 1 1/2 

c- L:1 Y' 5inh  v 0.48 .88 1.44 2. 10 

(X .44 .56 .62 .67 

14 
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Note that a change in the "aspect ratio" in the ratio of 1:8 only- 

changes the resulting moment by fifty percent and that the fore and aft 

orientation thus is slightly more objectionable as far as the moment is 

concerned.    Note that the moment on a square,  as expected,  is almost 

exactly equal to that of a circle of the same area.    These effects are 

all,   of course,  caused by the fact that the pressures decrease as the 

square of the distance from the origin.    These effects may be given 

more precisely by a method to be given in a subsequent communication. 

The purpose of the present article is to show that for a given area the 

moment effect at a central sink is greater when the "aspect ratio" of 

the surface is small,  that is,  if the surface is oriented in a fore and 

aft direction. 
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III. TWO-DIMENSIONAL WING THEORY 

A.    Wing With Line Sink on Upper Surface and Discrete 
Line Jet on the Lower Surface 

In the following is given the theory of a wing with 

jets showing the integrated effect of such jets on the lift and the moment 

of the wing. 

A source at   (x,  ,  y, )   of strength £   and another source at 

(x, ,-y   )   of the same strength gives a symmetric function   (about the   X 

axis)   (see Figure   III-l) 

t=^ rs   4Tr (*-x(ff(y-Y,)3 f-io^ "oxjVCY-hY.f (iii-i) 

If the points   (x,  ,  y   )   and   (x,  , - y, )   are on a circle of unit radius,  the 

quantities 

M^JCx-xy-fCY-Y,)2 

and 

N^Jcx-Xif-KY-fV'' 

may be expressed in angular coordinates o^ 

Ma=rz[l-cosO^() 

fN|2=r2[|-C0S(^+^|) 

16 



and one has in angular coordinates 

S—^CtocjVU-h^) (III-2) 

UNIT CIRCLE SHOWING COORDINATES USED 

Throughout Chapter III the 
reference length (or unit) 
corresponds to the radius 
of the circle or the half 
chord of the wing. 

lojnf = 

C05O<=r_X 

l+X, 
-x, 

Figure III- 1 

17 
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The velocity at the surface of the circle is 

^S    doC """ an 
£   / I   dM   .    I     dN \ 

(HI-3) 

With the circle transformed into a straight line one has for the velocity 

along this line with a source of strength £   on each side 

~^<iX        3*   dX        IT 
I   dM   ,     I    dN + M do<      H   doL 

i2<. 
dX 

(in-4) 

One has further 

2- dM S!n(^-^i)  ^.ftj, o(-o< Cof- M dcA |-Co$(^-^()     " z 

2.  dN Sin(^+^j)      rK o^+oi 
N   do^" ^   l-GOS(^M) 

= Caf 

and 

Cof-^^ + Cof oi-}-c»< 25iK.o<l 

C05o(—GO-S^j 

Also 
dX 5mo< 

and one has finally 

d4> _       £ Sino< l_ 
vs   ^ dX "IT   Co$o<-co5^|    5ino< 

5"        TT       Go^oC-Co^oii 
(III-5) 

18 



i 
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Note that because of the symmetry one obtains with ä source ^ 

on each side actually a simple source of strength   2 £   in two-dimensional 

space.    The line between  x = -1   and   x = 1   has no influence in the flow as 

expected.    With   x - coordinates the equation then reads 

b      TT      X-X, 
We shall also need a non-symmetrical flow configuration with a source at 

(x, ,   y, )   but with a sink at   (x    ,   -y, ) .    The development is entirely 

similar with the exception that the quantity   N   now has a negative sign. 

There results 

and for the non-symmetrical velocity 

V =—i- 5i^   ^ !— (111-6) 

This expression may be written 

Vn = 
e yi-öd 
ir   x-x,    rr:va i^ X 

Note that the velocity   Vn   goes to infinity at   x «i 1   and at   x = x, 

as it should. 

19 



We shall next calculate the flow function for a sink of strength ^ 

designated as   - £   located on the upper surface only.    It is observed 

that if one adds the symmetric and the non-symmetric flow functions 

already developed one obtains the effect of a double source on the upper 

surface,   since the source and the sink cancel on the lower surface.    We 

may,  therefore,   write for the velocity resulting from a sink ( -  £    ) 

I 
only on the upper surface: 

1 V = -£-f L + _J ^J ) 
217 Vcosoc-co^,     Coso<-Co5^|       Sim* / 

To avoid the infinity in the velocity at   x - 1   or    c^ •= TT     or to 

comply with the Kutta condition,   one must introduce a circulation function 

T      air 

where j    is the clockwise circulation constant. 

The velocity due to circulation is then 

u_d4__ M   äu ^  T      i..  (ITI^ 
T-'ax--"^r dx     zu  sind. 

Now with a sink on the upper surface 

Vn+-^"finiteat ^='n" 

2 0 



ür^-LJL. J 
^T      -|-(j05oi, 0 2Tr 

4" —'— •   = finite 

or 

Hence the induced circulation goes to infinity for   O^. = Jf 

or when the sink is near the trailing edge.    For the sink in the middle 

c>(| =—^— ,    T* =z f      and for the sink near the leading edge   "P-^O- 

B,    The Effect of the Combined Flow Field 

There are now altogether four velocities   V    , 

Vri ,    Vp       and a superimposed constant velocity   W .    We shall rewrite 

these quantities, 

Vs = 

Vn- 

Vr- 
£ 

W = t 

Co5o<-f X, 

Y, 
Co5o(-|-X|      5i(0C^ 

Y. I 
(III-9a) 

SilOo< 

g-jy     ^o (where   W    s ~- W for symmetry) 
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There is thus a symmetric component comprising 

w+vs 

and a non-symmetric component 

Vn+Vp 
The acting negative pressure on the upper surface is then 

1 

-L.0 
2 K W+Vs-+-Vn + Vp 

and on the lower surface 

Similarly 

7-?[w+Vs~(Vn+Vr)J 

The net lift force therefore is simply the difference 

AL=2f(W4-V's)(Vn4-VrO 

and the integrated lift force is then 

L = 2ej (w+VsXW. + V'r^X 

(III-10) 

(iii-ii) 

and the clockwise moment about the point   x-,    or the location of the sink 

is thus 

= 2?[ (W+ysXVn+ VpXX-X'Jo X, -v. dX (111-12) 
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1 

I 

Q 

ö 

S 

I 

Inserting the expressions for the velocities the integral becomes 

Jo Coso(+Xi 
I 

I  LC05o<+X,      l-X, 
^-r Smoicioi 

Si not. 

l-Kl ; 

or rearranged 

^0 

I 

CO^X^^^TV^ 

(III-13) 

The first term contributes nothing. 

The third term contributes 

L, = 2^(^) W.-^^^wf-ji-) (III-14) 

For the second term we must evaluate the integral 

+Tr 
(  do< ^iioo( 

|-xz 
i Al X,i-6o$o( 

tir 
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I 
There is a singularity at  x,  .    We must,  therefore,  omit the 

range   x^ -^Xi     to    Xi-f i\xj    ,    We get,  therefore: 

I 2Y,    _      z 

The contribution to the integral is thus 

t   \* 2 .„ftx2-    I 
i-z=2e(-4-)2v^i3r=e(-T-) 

(111-15) 
TT/    4X 

This lift is carried on the wing beyond (outside) the opening   2  L± 

C.    Effect of Propeller and Baffle System 

With a perfect baffle system which may be 

approached in a practical case there is no los-s at the-entrance to the 

"ducted" propeller,   and the ideal case potential flow is, in any case, 

the most important as the limiting case. 

The pressure difference produced by the propeller is equal to 

—Tm P\f        where   V   is the velocity at ths propeller or in the propeller 

plane.    This pressure differential will exactly restore the pressure to 

normal.    The thrust of the "propeller"   is thus   — «y2. 2 AX 

where   2 AX    corresponds to the opening or 
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Tp=e^=e(ix)^=e^ ,I^-16, 

Note that the propeller does not carry the full thrust.    The 

total thrust caused by the sink equal mass per second  pc multiplied 

by the final velocity or the total thrust 

T= Q %  (III-17) 

Thus exactly one half of the total thrust is carried by the propeller in 

the duct.    The remainder is carried by the "perfect" baffle system 

except for the relatively small portion   (Equation (III-15) : 

carried by the remainder of the wing beyond the opening    Z^X    '  an^ 

the independent contribution of the induced circulation shown above. 

Thare are thus the following contributions to the lift: 

The contribution due to induced circulation 

and the contribution directly due to the sink with the thrust carried one 

25 



I 
half by the propeller and one half by the baffle syetem and the wing, -in 

total 

u= r _„* 
2=f^r=^M/p (111-19) 

where   Wr-,   there is the velocity in the plane of the propeller or the 

total downward velocity 
2AX 

D.    Pitching Moment 

We shall next proceed to evaluate the moment 

around the point  x,  ,    the location of the sink. 

,i- n 

M=z?(^fhjD(^7dü*iX-. (J>$oi+Xi 
■4(Co5o(+X,)Jo< 

'-}-¥ 

=¥-whj {(*°+^+T^*-i^<COi*+*^ 
tir 

e 
ZJ/ "/ l-Xi 

0 

^^(Tnjrr^-T 
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or finally 

M=e^-i^<r(w+^r) (m-zo, 

We shall next indicate the length of the moment arm.    With 

the moment in dimensional form,   with   p   as the half chord 

M^MT^WF) 
arid the force or lift 

"-^(-i^-w+Wp) 
one has for the arm 

b-^(w+- ^ 
a_ M _      l-Xi^ZTb 

-Ä7vv-fwp 

or also 
(111-21) 

b-^ + 
w ,     i-x, 
Wp        Y, 

The arm Ct is given in terms of the half chord as unity.    The 

ratio   W/Wp.   is the ratio of the forward velocity in terms of the 

downward velocity of the propeller   W^ - 
a6x 
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These results are all given for zero angle of attack.    The effect 

of the angle of attack may be directly superimposed.    This problem will 

be taken up in a later section of this report.    There is a ground effect 

and also a displacement effect of a (large) jet on the lower wing surface 

which are not treated at present. 
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IV. FLOW FIELD FOR UNIFORM SINK DISTRIBUTION IN A 
CIRCULAR DISK 

A.    Point Sink 

The velocity potential for the flow of a point sink 

of strength    ^) Q^   located at a distance    ^   from the origin is given by 

S^r^)=-^ 
4TTr' 

sink sa (IV-1) 

i ^(r.w)=^l{f)\c^)     "For -^>| 

For an angle      66* z 90     the above Equation (IV-1) becomes 

861 ^ / r0 •" 
Sf^tmST)™>    ^X>l 10=90 

WM-jtzi-i)™  wi<! 
(A)=90 'o rv=.ö     ,0 

(IV-2) 
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I 
B.    Circular Disk Sink 

The velocity potential along the axis of symmetry 

of sinks uniformly distributed over a circular disk is found by integrating 

Equation   (VI-2)   over the area of the circular disk. 

1.    Case (a):    T^ K0 

For   K'^Rn i-"6, --— > I   ^e velocity potential along the axis 

9 - Obecomes 

<t>(r,&)= 
Ro/27r 

/ / 4Trr 
•|.(i(-fJT„co)i;di'0dif (IV-3) 

Integrating we get 

tyW) = 
1 

SQ TTRo <?    ?nC0)  / R 

Substituting for    J ^. TTR,,2" = (^ 

(^ 

n 

we find 

1 
ill ^To    >1+2-     0      f*' 

(IV-4) 

i 
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I 

I 
i 

Since the flow field is axially symmetric with respect to the 

axis    9=i0  we know that the Laplace equation 

has the following non-singular general solutions 

i 

1 
j $CKl»=iAn r

n7n(w9)+£ Bn-J^T^cwe) 

I 
For   v==0  the above equation becomes 

I 

(IV-6) 

09 *0 

7 n=o n=o       r 

Comparing Equations (IV-4)   and   (IV-7)   we get 

A^O    a   Bn=^_-i^: 

Consequently for     |P*>R0   the velocity potential        0C^)&J       is 

given by 

1 cjxr.e^^-gR: !
nZ rl, l*Ccoie) 
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2.    Case (b):   j^ R0 

For j1" <£l  K0       we have that 

1(0 

and < 

; for   o << r,? < r 
I 
\ 

for    r< r0<Ro 

(IV-10) 

Thus the velocity potential      d) CK"; b)    at the axi« ©nO   is found by- 

integrating  Equatiorß(IV-?,)   from   Oto r   and from   r   to   R   respectively, 

i.e. 

rK 

\K 

(IV-11) 

Performing the integration we get 

<M=^f m, r h-s-l 
y, 

r;+k^4-^ 
/Re 

T 

or 

(t>cn")= ss 6» 
2K>+| 

2  fo^^TH   /   n+2 
^^i 
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] Substituting       ff R0
2. 5^= Q^ we find 

^*i 

(IV-12) 

Making use of Equation (IV-6),   since the flow field is axially 

symmetric,   and comparing Equation (IV-7)   we get 

I 

00 

h,= & e-  ?*&>   2K+I 

An = - 

K4I 
K-f      K+Z. 

TnCO) 
(IV-13) 

ZTTRr' n-l 
-f-oir n^ 

Bn = 0 

The summation of the first term of Equation {IV-13)   is 

c® 

s=z- ?KCO;   zK-hi 
K-l       K.+ Z 

oo 

S=S :Coj 

Expanding the coefficient of      fzK    ' we Se* 

s=i(1^r+-i]yT^ 

(IV-14) 

Since the odd Legendre polynomials *ZK-¥1    '^^®        '  ^e a^ove 

equation might be written as follows 

(IV-15) 

33 



J 

From the expansion of the Legendre polynomial at zero we have that 

D   /^    /   n*    I-3-5-7 te*-lj p«(o;=eu 2,4.6.8. 2/ 

Consequently,   we might write 

p      co)--P (Q)   aKi-1 (IV"16) 

The first sum of Equation (IV-15)   might be written as 

oo , oo 
(IV-17) 

Changing the subscript   k   to   n ,  where     n =   k - 1 ,    Equation (IV-17) 

becomes 

F2<Co; _ c   Pma^ 
^0  aK-i     <-    e^l 

Making use of Equation (IV-16)   the above equation might be written as 

2<~l    ^     ^-fi     an^z 

or 

Co       m    ^^ ^0 

K=o K=-O 
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I 

Thus we have that Equation (IV-15) becomes 

or 

s=E^iuP.co)=-) dv-is) 
K=0 
<4 

And 

^r0 Z(KHX<+2; ^      ^ = 
(IV-19) 

Making use of Equations (IV-13)   and   (IV-18)   the velocity potential 

^Kf, 6) becomes 

where 

i'-l   & t'-S 
N ^1 Mi 

C.    Streamfunction 

A streamfunction     Y (,K v)    is defined fromi the 

continuity equation 
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I or 

JL ^r(^r^io9^r) -H^-(27r^iV)ö-i(9)= o 

Thus we have: 

(IV-21) 

. ■ 

This definition also satisfies the equation 

C1(FIM^= airline ^|rcl9-ZT[r5ine-/tCedr 

1-    Case (a):     h^R, 

(IV-22) 

From Equation (IV-21)   we have that 

^l^f^Vo;?,^ 

^0 

^lt- (^Uo)    J?h 
h=0 

(IV-23) 

/m = cose 
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I 
Thus the first of Equation   (IV-21)   becomes 

(IV-24) 

Integrating we get 

(IV-25) 

Differentiating Equation   (IV-25)   with respect to   0    we get 

or ( F       ^r) 

f=l|(^7S^9{(,^-^-^#^ (IV-26) 

From the second of Equation   {IV-21)   and from the first of Equation   (IV-23) 

we have that 

zt^r$W=AwE^^U<>)?n(W)       (IV"27: 
n=-o 

Comparing Equations   (IV-26)   and   (IV~27)   we get 

al^^^^^f^-f^j^-^1"!^^"»^ 
Solving for ■fee; we find 

Q^^lf^Sf'-^^-^f"^^^^ 
; 

= -4-S5ine--f'«; (IV-28) 



Since the differential equation in the brackets is equal to zero,  the 

above Equation {IV-28)   becomes 

-pc0)=_A.5,,ne    &   -fc9;=r-|-^CD^ö+c')      (IV"29) 

and for    6 = 0   we have l|'(0<)=r0 Consequently 

And Equation (1V-Z5)   for the streamfunction becomes 

&> , .   r\ 

r^=^^-o-^^^T 
/* 

(17-30) 

2.    Case (b):    T^ K( 

We follow Ihe same procedure as that for the Case (a). 

From Equation (IV-20)   we have that 

(30 

^-f=-4f("^-^^ '^ i n=o / 

«^ y\-l 

Thus,  the first of Equation {IV-21) becomes 

^r"     Ro  R^/4 ^c T 

(IV-31) 

(IV-32) 

38 



i 
Integrating we find 

(IV-33) 

<   - 

Differentiating Equation (IV-33)   with respect to    Q    we get 

f^^/K^-^f-51"^) 4 

{IV-34) 

ij^ki-^r^f-^w^ 
From the second of Equations  (IV-21)   and from the first of 

Equations(IV-31)   we have that 

ii^a-n-r^K^e 
*e (IV-35) 

= - a 51«6(-^;|T, Cco^^+I^fif ?n (co^j 

Comparing Equations (IV-34)   and   (IV-35)   we get 

G4)^4^f-(|-^r- 
\ 

+2 r^fSönd 5'"e 
dT. »dTn 

,1 

ff-o-^Y '   f'tf) 

* "?>)/   C N"-!, 
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I 
I 

I 
3 

Solving for     %'(&)  we find 

I'ce^-Q^neUfd-^-.^+a^ 

(IV-36) 

+i:^irk'$--^«-"H 
Since the differential equations in the brackets are equal to zero, 

the above Equation (IV-36) becomes 

^e)=o and ^=Ci 

and for 9 = 0 we have      ^(P) ^^ 0 Consequently 

And Equation (IV-33)   for the streamfunction becomes 

,Z    ^ 
\ 

(IV-37) 

/ 

because 

D.    Velocity Potential at   r «   R0 

From Equations (IV-9)   and   (IV-20)   for the 

velocity potential for   r^ R0   and   r^R0   respectively,   it is easily 

shown that 

t( Hoj e; 40 



has the same value on   r =   R. 

For the proof we make use of the series expansion of the Legendre 

polynomial   P     in the interval from   0  to   1 ,  i. e. 

p.^E^V) (IV-38) 

Since   P, s  Ü     is an odd function and we are interested only in the 

series expansion for the interval from   0 to 1 ,  we define ar: rven 

function   P.    r   jPij   •    Thus,  we have 

Multiplying by    "p (JA) and integrating from   - 1   to   1   we get 

From the orthogonality property of the Legendre polynomials we find 

^•H 

^1 

^l 
??m(fty OJ VV\ 

am-hi 
(IV-39) 

Since   P-,    is positive in the interval fron   0   to   1 ,  we may write 

rJl        In   (-1 +0 0) 

in (o -fo \) 

5 , 

—  n 

For   m   =   even,   i.e.     m =   2n ,  we have 

?tM P^Mn&^-^m^ (IV-40) 

41 



I 
1 

Thus, from Equations   (IV-39)   and   (IV-40)   we find 

For   m =   odd,  i.e.    m =   2n + 1 ,    we have 

because the integrand is an odd function.    Thus, we have that 

Consequently, the series expansion of   P.   in the interval   0  to   i 

becomes   ■ 

«o 

^-^Ti^TÖ^^^ (IV-41) 

And its derivative gives the following for the same interval   0   to   1 . 

I=- (IV-42) 

Making use of Equations (IV-41)   we prove that the velocity 

potential    (bCT; 0) given by Equations (IV-9)   and   (IV-20)   for   r>Rc 

and   r^R0   respectively,  has the same value on   r =   R    . 

Similarly,  from Equations   (IV-23)   and   (IV-31)   for the 

velocities for   r^R.   and   r^R0   respectively,  it is easily shown that 

have the same values on   r s   R    , o 

For the proof we make use of Equations (IV-41) and (IV-42) respectively. 
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ANALYTICAL RESULTS 

The velocity components are given by Equations   (IV-23) 

-and   (IV-3i)  for the two regions: 

^1 & 0 4^-^1 
°0 "^    ^0 

For a velocity normal to the sink disk,  equal to one,  the strength 

of the source,    Q, becomes 

a=2TrRfv0 = 27rR0
2- 

Thus,  the above-mentioned Equations {IV-23)   and (IV-31)   become 

respectively, 

I a.    Region       —II- ^>. j 

^-E-f^i-^r^)^) 
(V-l) 

r 
b.    Region _JL_ <^ | 

22.   ^^     /  i^xinH 

r     9o ^'   ,...iM0 
(V-2) 

Ue=5i«eJi+|oliL^)   p2„(o;-^ 
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1 

If the flow field of a propeller in a circular opening of an infinite 

plate is represented by a uniform sink distribution,  then the flow field 

in the region above the plate might be represented by Equations   (V-l) 

and   (V-2) . 

At the sink plane,  there are symmetric radial flow velocities 

toward the center line and a unit actual flow velocity no/mal to the 

sink disk. 

In the region under the sink plane a jet with an increased total 

energy is emerging due to the energy a-dded by the loading of the propeller. 

For this region,  one solution to the potential flow field might be 

found by adding a uniform flow of double the actual velocity,   in the 

cylindrical region with cross sectional area equal to that of the sink disk. 

Thus,   superimposing the sink disk flow field to the uniform flow 

field,  we get a flow field which has a jet with a contraction ratio equal 

to two. 

Since the cylindrical flow has a discontinuity on the cylindrical 

surface,  the resultant flow field will also have a discontinuity there. 

At infinity,   the mass flow from the circular opening of the plate 

is equal to the mass inflow from the cylindrical surface-due to the sinks. 
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In the Tables   No.    V-l ,    V-2 ,    and   V-3 ,    the values of the 

radial and tangential velocities   ur   and   UQ   are given for various 

values of the radius distance   r / R0 .    They have been computed from. 

Equations   (V-l)   ar.d   (V-2)   for the regions 

1>» and 
0^ 

They give the flow field in the upper region of the plate for uniform 

sink distribution and normal velocity  V    = 1   at the sink disk.    They 

have been programmed in the   IBM 704   computer at Republic Aviation 

Corporation to an accuracy of ten significant figures. 

In the attached Figures   1   and   II  the velocity field has been 

plotted as computed for uniform sink distribution.    In the region under 

the plate,   the uniform velocity equal to   2V    =  2   has been added 

geometrically,   and the resultant velocity field has been plotted.    In 

the last Figure   II   an effort has been ma-de to draw the streamlines 

which correspond to the computed field directions. 
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TABLE    V-l 

Velocity Components   ur   and   UQ 

For Uniform Sink Distribution in a Circular Disk 

■. 

o ■Z ■3 .4- ■5 ■6 ■7 ■ 8 ■9 

-00 
-(Poo 

j.OCO 

■GSC 

I.OCO 

.!0Z 

j-OöC 

■ 155 

1.000 

■213 

j.OCO 

.280 

).000 

■353 

).000 

•446 
).000 

■ 572 

I'OOO 

-78+ 

I'OOO 

• oz ■ozo 

J.0ÖO 

■010 

■ 397 

■ )Z\ 

■994 

■115 

■990 

■2K 

■3S6 

■257 

■93z 

■172 

■9% 

■ 465 

■96,7 

■ 5yo 

.952 

■797 

•9/4 

• 04 
• 99^ 

.oS>o 

■99} 

■ )4I 

'987 

■195 

■S>80 

■252 

■ 972 

■ 316 

■ 9c-y 

•390 

• -V' 

.4SI 

• 934 

.604 

■905 

■796, 

■833 

■06 
• 998 

■no 
•990 

■itO 

■980 

■2/4 

■910 

■211 

■958 

■334 

■944 

■ 107 

■121 

496 

■9ÖI 

■ 613 

559 

• 786 

'76C 

■06 
■ 080 

■991 

■ >z9 

■ 9S5 

■ WO 

■97Z 

.2}Z 

Ho 
.289 

$43 

■351 ■421 

■90.1 

■ 509 

•869 

■ 619 

■814 

.770 

■6,10 

• 10 
■I0O 

$55 
■149 

■ 980 

■198 

■964 

■ 150 

■9H 

■30t, ■ 367 

.906 

■431 

■877 

■ 519 

• 836 

■ 622 

■ 711 

■747 

•640 

•20 
-200 

■580 

.244 

.9iro 

■ 289 

■92-0 

■ 316 

■887 

^84 
■SSI 

■i36 

■$07 

■496 

• 755 

•5*9 
.605 

605 

■590 

■641 
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VI. APPENDIX I 

Wing With Line Sink on the Upper Surface 

In this article a general method will be given for the 

evaluation of the velocity field of a flat wing with a line sink on the 

upper surface.    The chord of the wing is taken to be of length   c r 4 

First we evaluate the complex velocity potential. 

We assume that the wing is in the   z-plane and has a forward 

velocity   W   under an angle of attack    o(0 . 

We make the transformation 

*=^t 
where: 

Which makes the wing a cylinder of unit radius. 

ijp* /jC" 

(VI-l) 

>° ^ 

Z'plane z-plane 
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I 
Every point on the flat wing is mapped into a point on the unit circle, 

A sink at the point   P, (xi ,   0^.)   on the flat wing in the z-plane, 

is mapped as a sink at the point   P^ (xt » y( )   on the unit circle in the 

z-plane. 

where: 

t:~*;+ir^    ^+-heiS ^ =z"ie' 
or 

X.rr 26056. Ä. ^0, (VI-2) 

From the theory of the flow around a cylinder due to a sink of 

given strength,   we have that the boundary condition of zero velocity 

across the solid cylindrical surface is satisfied,  by replacing the 

cylinder with another sink and a source of the same strength as the 

given sink,   placed respectively at the inverse point with respect to the 

circle and at the axis of the cylinder. 

:-£;=-2£ 

Thus,  the flow due to a sink or a source on the cylindrical 

surface would satisfy the boundary condition if we add a source or a 

sink of half strength respectively,   at the axis. 
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i 
f Rotating the. z-plane by an angle equal to   - c^0 (where O<0 is the 

angle of attack)   we get: 

if 

*r 

z -plane 

r-i'e'^' (VI-3) 

and 

Xt
f/= Cos( 6,-0(0)= Cos(co5~V- ^0) 

(VI-4) 

Finally the transformation       V\/ = J- -i — maps the z -plane 

into a w-plane with the cylinder transformed into a flat plate,   with the 

sink at the point   Pi* (x, .   0. ) . 

-z 
he- 

fg 
jr w=A-^ 

w-plane 

(VI-5) 

where 

or 

(VI-6) 
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The coinplex velocity potential for a flow around the unit 

cylinder with a sink of power 2c   at the point   z,   and a circulation [~ , 

is given by 

I   x      z£ ir ^>W(^f)^h(y-^^h^^hf   (vi-7 

where the third term corresponds to the potential of a source at the 

axis of the cylinder with half the strength of the given sink,  for the 

satisfaction of the boundary conditions. 

Making use of Equation   (VI-3) ,  the above equation reads as 

follows in the   z"-plane: 

mMt'^-Y')-T!n(i'-xh&n}'+ ir ^'+ ^ (VI-8 

The Kutta condition gives that the velocity at the trailing edge  should be 

finite and we have that 

A-    cii' d 
finite at    2- = 

ff   d^ 
^=1 

Since at   z'= 1 

we should have 
IIZ. 

t 
T=ö 

f 

at     y = 

"^   o ^cv 
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This gives the value of the circulation strength j-  . 

Thus,  differentiating Equation   (VI-S) ,  we get: 

f=^ e ■AMO    e. 
i°>-o \        e       \ f-       \ IV A L_4._ä L + 

^  /    ir V-ü     ^ $    zitf 
(VI-10) 

and at   z'= 1   the above equation becomes 

dF ̂ ^.^^J-^-L-^-O (VI-11) 

where 

Solving the above equation for |      we get: 

|~ = 4TTW^)no<ö-h(f I+ 70' 
-X' 

(VI-12) 

and substituting   x     by cos   Oi the above equation becomes 

r=4TW3^0 + £^k 
(VI-13) 

From the equation for the complex potential 

' 

= U-'L\r {VI-14) 
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and from Equations   (Yl-9)   and   (VI-10)    we get: 

lA-ivHW e    - rUo    eKUo 

^^^ rj * H ™i %fi-ti (VI-15) 

On the wing the complex velocity becomes 

: 

i 

K-^Jlvfe-^-^^^^^Un,   (VLU, 

where    0,   is given by     x    =   2 cos 6, 

Simplifying the above equation and making use of the identity 

-e 

,   ;    Sin(6,-e) 
■co5(er&; 

The above Equation   (VI-16)   becomes 

(VI-17) 

'H"iV = W5;n(e-^o;--^-$in(ere)
N-t--P 7   4T  I-COSCM;     4T Sine 

(VI-18) 

Substituting for P" from Equation   (VI-13)   we get 

"Sine 

v=o 

w|5lK)(e-^)i-5fno(oU^ SMöI     iir>($re; 
l-cos«,    \-cos(er©) 

(VI-19) 
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I 

where the actual strength of the sink is   d 

because only the strength of the sink corresponding to the flow field 

outside the cylindrical surface is concerned. 

From the trigonometric identity 

5mCe("ö) SmÖ,+ 3ine 
-co5(e,-e;      cosö—cose, 

the above Equation (VI-19)  is written as 

(VI-20) 

5ln(e-o<0)-|-5i^( (VI-21) 

For the case of very small angles of attack O^   ,  we might write 

Si^Ce-^)—Sine—oi0Co5e        and Sin^^roC 

and the above Equation (VI-21)   reads as follows: 

+ 411 
Sinfr, S,'n9,+S>|io9 

•COiSi        Cos^-CoSÖ 
(VI-22) 

I 
I 
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This equation for the velocity can be separated into even and odd terms 

as follows: 

U=(V+Vs)+(Vr+V,J 

Even: 

v=w 

VS    -fir   Co$erC05Ö 
(symmetric sinks) 

1 
i 

Odd: 
Vr= 

£    5ir)e, 

4-? l-COSd, 
■W^, O-^jsib 1         (circulation) 

w _   € /   5iV)&,    ^  I _ (anti-symmetric sink 
0 and source) 

(VI-23) 

In the case of zero angle of attack,  i.e.    ^©^ 0 > t^e above 

Equations (VI-23) become 

v=v\/= 2,-JJ-   »ve 

£       I 

^    2. 
Z-TT    M|-T 

\/   _   £       2-x,    „    e. I 2 + ^, 
Vr "' 47r iJi*^    ^^ r^^J 2-x, 

Vn = 

(VI-24) 

22-Xlf 
4-Tr    JD. 2L_   -Lr^-TI  "^^xJ2L.r 
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I 
where we made use of the equations 

i 

90 T COSQ = ^- )     0069=-^-   ,   Sihe=J-Ji^1" &  s\rtrf\z*-K 

The above Equations   (VI-24)  are identical with Equations 

(III-9a)   of Chapter HI.    The only difference is that in Equations 

(III~9a)  the chord of the wing has length   c - Z , and in Equations 

(VI-24)   the chord is   c = 4 . 

I 
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VII.   APPENDIX II 

POWER FOR SUSTAINED LEVEL FLIGHT 
OF   VTO   AIRCRAFT 

It has been observed that in most cases so far experimentally 

investigated that the power consumed in transition is actually greater 

than that in hovering flight.    This has been due to various,  more-or- 

less unexpected difficulties.     The undesirable pitching moment is 

cancelled by a negative lift on the aircraft causing ar increase in the 

body drag, with an induced drag in the bargain.     The importance of 

a wing surface as a relieving device has been pointed out previously, 

also the absolute necessity of employing proper baffles to avoid serious 

losses in propeller efficiency and avoid destruction of the propeller. 

We will,  in the following,  as an example only,   study a case in 

which the outlet is designed with variable deflectors and the area perpen- 

dicular to the thrust vector is reduced as the cosine of the thrust vector 

with the vertical.    This arrangement represents the simplest mechanical 

case.    For instance,  when the velocity is pointing rearwards at an angle 

of 60 degrees with the vertical the free cross section of the openings is 

one half of the original full area.   In such a case the pressure behind 

the propeller and ahead of the outlet baffles will increase and the flow 
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velocity through the propeller decrease with a corresponding reduction 

in the mass flow.   An adjustable pitch propeller is required and only a 

limited range of operation is available.    We shall,  only briefly,   indicate 

a second case in which the mass flow is kept constant thus permitting the 

propeller to operate at constant pitch under full power for acceleration 

while the outlet openings are controlled to maintain a constant mass flow. 

In this case, the free area perpendicular to the reaction vector i« slightly 

reduced as the speed is increased.   Details of this case will not be con- 

sidered in the present paper.    However,  it is pointed out that a complete 

survey of all possible methods is desirable and should be undertaken in 

the future. 

Finally,  there is a short discussion of the pitching moment and 

required compensation. 

It will be shown in the following how the main performance 

parameters are related in the case for which the outlet area perpendicular 

to the direction of the jet is varied as the cosinus of the rearward de- 

flection angle. 

Let us express the lifting force of the fan or fans by the formula 

T=MsVo (VII-1) 

I 
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I 
where   V      is the vertical downward velocity at the outlet of the duct. 

M     is the mass of air per second and is thus equal to 

I 
i 

1 
I 

Ms = fAp\/p (VII-2) 

where 0    is the air density and  A_.   is the cross section of the duct 

or ducts at^he outlet,  measured horizontally or at right angles to the 

vertical outlet velocity   V    ,    Thus one has finally also' 

T=fApVp (vn-3) 

Let us consider the condition in a forward equilibrium ilight at 

a velocity   V .    The expression for   T   remains as given.    The aircraft 

has a wing of area   S .    The drag coefficient of the aircraft is then ex- 

pressed as 

(VII-4) 

where,  as usual,    CDO   is the drag at zero lift and   CT    the lift co- 

efficient of the wing.    The last term gives the induced drag of the wing 

surface   S   of aspect ratio   A .    The drag force on the aircraft in forward 

flight is thus 

D-^V25Cp (VII-5) 
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and the lift force is 

L=J-fV2SCL (VIl-6) 

where then this lift force of the wing system plus the thrust force   T 

of the fan system must be equal to the weight   W   of the aircraft or 

L+T=W (VII-7) 

I 

It can be verified immediately that the lift of the wing,   if any, 

is far less costly in terms of power than the lift due to the fans.    There- 

fore,   ac will be evident in the following,   the lift coefficient   CT    should, 

under all circumstances,  be maintained constant at the highest possible 

safe or convenient value    until   T   ,  the lift of the fan,   goes to zero. 

Let us consider the ideal power-consumption of an aircraft in 

uniform flight with a drag coefficient   C      and a lift coefficient   CT   . 

The theoretical work done on the mass   M     in unit time is 
3 

where   V     is-the outlet velocity which we may consider as composed of 

the downward component   V      already-defined and a rearward pointing 

component   V     .    We may, therefore,   rewrite the equation as 
R 

W^^MsCVp + V^-V2; (VII-8) 

I 
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i 
Notice,  at this point,  that in addition to the momentum drag on 

T 
the aircraft there is,  of course,  a drag due to   Cp. .    There is a useful 

thrust produced by the fan system equal to 

T=MS(VR-V; 
and the useful work required would be equal to 

wf=Ms(yR-v;v (VII-9) 

By subtracting the useful work given by Equation (VII--9) from the total 

theoretical work of the propeller given by Equation (VII-8) and differ- 

entiating with respect to   VD ,   we find the condition for the minimum 

work required, 

VR=V ,VII-10, 

and we have the following important statement.    The minimum work is 

expendent,   if and when the rearward velocity component of the issuing 

jet is identical with the flight velocity.    The drag caused by the normal 

resistance of the airplane is a function of   V   only and does not affect 

the derivation. 

The result is perfectly general and to be expected since it 

obviously means that the horizontal momentum drag of the air mass is 

avoided when   Vn =   V . . • 

Note also that the wing should,   under all conditions,  be maintained 

I 
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in a position of the highest permissible lift coefficient.    We shall next 

consider this problem more fully,  remembering that thrust must also 

be provided to take care of the normal drag of the aircraft.    We have 

already shown that the momentum drag of the aircraft is   ;,avoided" 

when,  and if,  V    =   V-.    It is,  however,  necessary to. provide a net or 
R 

real    forward thrust force produced by the fan system in the magnitude 

(Equation (VII-5) and a net lift force of the fan system equal to the excess 

of the weight   W   of the aircraft over the lift of the wing   (Equation (VII-6) 

Therefore,  with a thrust 

| TR=MS(VK-V) (VI1-11' 

one has the equations 

"pR = [) the drag of the aircraft 

and "T = y^ — [_ or written out 

for the drag 

pVpAp(VR"W=-i-fCpV2S (VII-12) 

and for the lift 
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With   W ,    C.   ,    Cr-j ,    S ,    and A-Q   given in these two basic 

equations one has from the first equation 

VR_l 
Vr 

V 
t)x v\y   '    V, 

(vn-i4) 

where the velocities are given in terms of the velocity   V 
D 

The second equation   (VII-13)   is similarly written in non- 

dimensional form: 

^ LLADI vj 
w 

p^   VO' fV^A, 
(VII-15) 

Here again the velocities are given in terms of the exit velocity   V^ . 

Work done by the power plant in equilibrium forward flight is 

again given by the formula   (Equation (VII-8)) which may be written in 

the form 

Wi=4-fVpAP(Vp+V(f-V
2
/) 

where   Vn    given by the expression   (Equation   (VII-14) )   balances the 

drag of the aircraft.    Any excess power is or may be used for acceler- 

ation of the aircraft. 

Rewritten in non-dimensional form and rearranged 

Wi -i (VII-16) 
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Notice in these formulas that in stationary condition   Vp   and 

V   are both equal to zero and both sides of   Equations   (VII-15)   and 

(VII-16)   are equal to zero 

Equations   (VII-IB)   and   (VII-16)   may be rewritten 

CLf V 
^[t)=T 

w (vn-17) 

and 

s 

Wc 

where     CP( - ^ Cp     ^^    ) 

of course,  decrease in forward motion. 

fTVp 

T   is the vertical thrust and it will, 

(VII-18) 

Inserting Equation   (VII-14)   in   Equation   (VII-18)   th«re results 

^   YD7 Vn \VJ v». 
(vn-i9) 

WL where 

in 
We have now in final form three equations;   the drag equation 

(VII-12)   or   (VII-14) 

VR    -V/VV^.V 

V -m Vr. 
(VII-19a) 
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the lift equation   (VII-13) or  (VII-15) 

and finally,  the work relation   (VII-16) or (VII-18) 

W»'   Up/    4.Tu0    ' 

By inserting the first equation into the third one obtains 

Equation (VI-19iabove.    The quantity 9C may then be plotted against 

V 
—r      to give a universal plot.    Next,  the second equation gives a 

D 
V 

similar plot of /\  against the same abscissa   (-n—)'   Actually the 

second equation gives us the value of   T   and consequently the value 

V Iv 
of   VT-J for any point   (-^rr ) .    The second curve gives finally,   with 

T   and   Vp.   known,   the power consumption   W.   for each point   (_— 
D 

With all the constants given one may finally plot   W ,    T ,    and   Vn 

against the forward velocity   V .    Excess power is then used for 

acceleration.    The ideal excess power is given as a function of the 

forward velocity.    Since the value of   CT    has been kept constant in 

this treatment,  the above equations apply to the region below the 

velocity for which the aircraft is completely supported by a wing. 
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VIII.   APPENDIX   III 

NOSE-UP PITCHING MOMENT 

It is assumed that the airplane in forward flight with the fan 

operating maintains a lift coefficient   CT    of a constant value.    Since 

part of the lift is indirectly caused by an increase in the circulation 

due to the effect of the jet this result means that the actual angle of 

attack will be gradually adjusted,  preferably by automatic means 

providing action on ailerons and tail surface to maintain,  at all times, 

the largest possible lift on the wing proper   —   at least to a practicable 

extent.    It is useful to develop here the fraction of thrust carried by the 

fan system as a fraction of the total weight   W .    From Equation {VII-15) 

it may be seen that 

where ß =-JLr'   _^- and the fraction is 
?-TCLXn 

r=^= w   l+Ki) z 
(VIII-1) 

Ty 
=. —i—       is thus a function of the forward velocity   V   for 

VV 

a given aircraft with a given fixed horsepower. 

The pitching moment caused by the incoming air on the surface 
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surrounding the inlet duct is shovn in the theoretical section (IIB)   to be 

expressed as 

M =7-^-4-^ (VI11"21 

where   R   in simple terms is tb    "radius" of the related wing area 

. around the duct.    In other words,  the effective arm of th-e incoming 

i 

mass force acts as if located    5" R   above the duct inlet. 

There is,  however,  also a nose-up pitching moment-due to the 

rearward velocity   VR    of the issuing jet,  if and when,  the jet -deflectors 

are located below the center of drag of the aircraft which is normally the 

case.    The effective total moment of incoming and outgoing mass forces 

is thus 

M=TY-(YR4<X) (VI11-3) 

where tho arm 0^ is the distance of the location of the jet deflectors 

below the duct entrance (or the wing surface). 

The remainder of the forward thrust force 

VR-V 

acts to counterbalance the drag of the aircraft.    The arm of this force 

is,  therefore,   equal to the distance of the jet deflectors below the center 

of resistance of the aircraft.    This center may or may not be near the 

center of gravity. 
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Let this arm be   Q   and we have a nose-up pitching moment 

M^TAlVb (VIII.4) 
vp 

The counterbalancing moment,  for instance,  from a tail surface 

Srp   with an effective arm   L   and a lift coefficient   CT j,   is 

Me=i-fCLTVJSTL 
which may be written 

or 

Me=i-f^Ap(^;^LCLT 

(VIII-5) 

where 

With Equations   (VIII-3) ,   (VIII-4) ,    and   (VIII-5)   there is 

inserting the expression for VK" V from Equation   (VII-19a) 
Vp 

we get 

v ■^^(XJW^/L 
or 

£= <*'(lA+(- ^v 
Vp 

V \2 
(VIII-6) 

( vJ 
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Notice at once that the condition   V = 0   calls for,  as expected, 

r an infinite tail effect.    For very larg« forward speed   V  » Y-p. 

Since the arm  p   between the center of drag and the location of the 

deflection vanes may fre quite small,  it is -seen that a rather ivormal or 

small tail surface will suffice.    The quantity  V    is,  of course,   at high 

speed in ijtself small (while   V     or the rearward velocity is large). 

The thrust carried by the propeller as lift is, in this case,  negligible and 

the aircraft is flying as a conventional airplane. 

Further,  if 0<  is in the order of five or so,  there is no serious 

requirement on the tail for   V •   Vn .     For small forward speed,  how- 

ever,  we may not use a tail surface for compensation of the pitch-up 

moment since then,   of course,  the tail is completely ineffective. 

There remains,  however, the possibility to use a small tail 

rotor k la the helicopter except that it if to be designed for vertical 

operation.    It will,   in fact,  be shown that the power required for such 

a scheme is actually quite negligible and that the scheme is practical. 

We need only balance the moment   (Equation (VTr-S)), 

1. M=T^(i-H+^ 
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Since the moment this time, fortunately,  is a pitch-up moment, 

the location of the tail rotor would be in the horizontal tail surface and 

the thrust would be downward so that any thrust carried would also 

unload the main rotor by the same amount. 

Notice that in the proposed aircraft the requirements outlined 

are achieved by various arrangements of simple nature.    The aircraft 

is designed as a high speed machine.    It has a normal tail fully adequate 

for flight conditions and large enough to balance required rearward 

thrust of the jets at a nominal forward speed.    It has a small tail rotor 

or supply duct to the tail using in the order of one percent of the total 

power of the aircraft.    This element fully takes care of the pitch-up 

moment inherent in this type of aircraft at a negligible loss of efficiency 

compared to any other scheme for the same purpose.    Such element is 

further highly desirable and necessary for zero speed control in pitch 

and the aircraft control system should be supplemented by similar duct 

or ducts to one or both wing tips to provide lateral control at zero and 

low speed.    The outlets of said ducts to be provided with adjustable-area 

nozzles to achieve highest efficiency.    Power or air to be supplied to 

such rotors or ducts either from the main powerplant or duct or from a 

separately powered compressor or by mechanical transmission to small 

fans as may be preferred. 
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